Abstract
The power spectrum of the light scattered by a two-level atom driven near resonance by a monochromatic classical electric field is evaluated. The atom is assumed to relax to equilibrium with the driving field via radiation damping, which is treated by explicitly coupling the atom to the quantized electromagnetic field modes. The power spectrum of the scattered field is directly obtainable from the two-time atomic dipole moment correlation function, which is evaluated by a method based on a Markoff-type assumption analogous to that used to evaluate the time evolution of single-time atomic expectation values.