Skeletal muscle buffering capacity is higher in the superficial vastus than in the soleus of spontaneously running rats

Abstract
Skeletal muscle buffering capacity (βmtitr) was determined in soleus (type I) and superficial vastus (type II) muscles of 16 Long–Evans rats with differing levels of spontaneous activity and in 11 sedentary control rats. βmtitr was 24% higher (P+ g muscle dry wt-1 pH unit-1) (mean±SD). There was no relationship between βmtitr and mean weekly running distance amongst spontaneously running rats, nor was βmtitr any greater in these rats than in a group of sedentary control rats. Protein to wet wt ratio was 31% higher (P-1), but there was no relationship between protein to wet wt ratio and running distance. Initial muscle homogenate pH (pHi) was lower in superficial vastus muscle compared with soleus muscle (6.36±0.25 vs. 6.63±0.16). Running rats had a significantly lower pHi in both soleus and superficial vastus than sedentary controls. There was an exponential relationship between weekly running distance and pHi in both the superficial vastus muscle (r=-0.86, Pr=-0.73, Pr=0.66, Ptitr in the type II superficial vastus muscle when compared with the predominantly type I soleus muscle. We suggest that this may be partly the result of a higher protein concentration in type II muscle. Future studies measuring βmtitr in mixed muscle (e.g. human vastus lateralis) should report fibre type composition.