Protection in elastic optical networks

Abstract
In this article, we analyze gains resulting from the use of EON architectures with special focus on transportation of cloud-ready and content-oriented traffic in the context of network resilience. EONs are a promising approach for future optical transport networks and, apart from improving the network spectral efficiency, bring such new capabilities as squeezed protection, which reduces resource requirements in failure scenarios. In the introductory part, we present a background on new network services based on cloud computing and content orientation paradigms, EON architectures, and their survivability mechanisms. Next, we show the impact of disasters on EON performance. To support the discussion, in the evaluation part we provide simulation results to compare survivable EONs and wavelength-switching optical networks, estimate the efficiency of different survivable EON schemes supporting cloud- and content-oriented traffic, and assess the robustness of EONs to disasters.