Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles

Abstract
Monolayer WS2 (1L-WS2), with a direct band gap, provides an ideal platform to investigate unique properties of two-dimensional semiconductors. In this work, light emission of a 1L-WS2 triangle has been studied by using steady-state, time-resolved, and temperature-dependent photoluminescence (PL) spectroscopy. Two groups of 1L-WS2 triangles have been grown by chemical vapor deposition, which exhibit nonuniform and uniform PL, respectively. Observed nonuniform PL features, i.e., quenching and blue-shift in certain areas, are caused by structural imperfection and n-doping induced by charged defects. Uniform PL is found to be intrinsic, intense, and nonblinking, which are attributed to high crystalline quality. The binding energy of the A-exciton is extracted experimentally, which gives direct evidence for the large excitonic effect in 1L-WS2. These superior photon emission features make 1L-WS2 an appealing material for optoelectronic applications such as novel light-emitting and biosensing devices.