Conserved and nonconserved functions of the yeast and human TATA-binding proteins.

Abstract
Although the TATA-binding protein (TBP) is highly conserved throughout the eukaryotic kingdom, human TBP cannot functionally replace yeast TBP for cell viability. To investigate the basis of this species specificity, we examine the in vivo transcriptional activity of human TBP at different classes of yeast promoters. Consistent with previous results, analysis of yeast/human hybrid TBPs indicates that growth defects are not correlated with the ability to promote TATA-dependent polymerase II (Pol II) transcription or to respond to acidic activator proteins. Human TBP partially complements the growth defects of a yeast TBP mutant with altered TATA element-binding specificity, suggesting that it carries out sufficient Pol II function to support viability. However, human TBP does not complement the defects of yeast TBP mutants that are specifically defective in transcription by RNA polymerase III. Three independently isolated derivatives of human TBP that permit yeast cell growth replace arginine 231 with lysine; the corresponding amino acid in yeast TBP (lysine 133) has been implicated in RNA polymerase III transcription. Transcriptional analysis indicates that human TBP functions poorly at promoters recognized by RNA polymerases I and III and at RNA Pol II promoters lacking a conventional TATA element. These observations suggest that species specificity of TBP primarily reflects evolutionarily diverged interactions with TBP-associated factors (TAFs) that are necessary for recruitment to promoters lacking TATA elements.