Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration

Abstract
Very long chain aliphatic compounds occur in the suberin polymer and associated wax. Up to now only few genes involved in suberin biosynthesis have been identified. This is a report on the isolation of a potato (Solanum tuberosum) 3-ketoacyl-CoA synthase (KCS) gene and the study of its molecular and physiological relevance by means of a reverse genetic approach. This gene, called StKCS6, was stably silenced by RNA interference (RNAi) in potato. Analysis of the chemical composition of silenced potato tuber periderms indicated that StKCS6 down-regulation has a significant and fairly specific effect on the chain length distribution of very long-chain fatty acids (VLCFAs) and derivatives, occurring in the suberin polymer and peridermal wax. All compounds with chain lengths of C28 and higher were significantly reduced in silenced periderms, whereas compounds with chain lengths of C26 and lower accumulated. Thus, StKCS6 is preferentially involved in the formation of suberin and wax lipidic monomers with chain lengths of C28 and higher. As a result, peridermal transpiration of the silenced lines was about 1.5-times higher than that of the wild type. Our results convincingly show that StKCS6 is involved in both suberin and wax biosynthesis and that a reduction of the monomeric carbon chain lengths leads to increased rates of peridermal transpiration.