General Approach for the Synthesis of Chiral Perylenequinones via Catalytic Enantioselective Oxidative Biaryl Coupling

Abstract
By using oxygen as the terminal oxidant, copper complexes derived from chiral 1,5-diaza-cis-decalin catalyze the enantioselective oxidative biaryl coupling of highly functionalized naphthols to provide octa- and decasubstituted binaphthalenes with high selectivity (86−90% ee). Products containing very electron-rich naphthalenes were prone to epimerization under the reaction conditions. This epimerization could be suppressed by employing naphthol starting materials with phenol protecting groups that attenuated the electron-rich nature of the naphthalenes. Direct oxidation of the resultant chiral 1,1‘-binaphthol framework completed the first asymmetric synthesis of a perylenequinone containing only an axial chirality element.