Production of Virus-Derived Ping-Pong-Dependent piRNA-like Small RNAs in the Mosquito Soma

Abstract
The natural maintenance cycles of many mosquito-borne pathogens require establishment of persistent non-lethal infections in the invertebrate host. The mechanism by which this occurs is not well understood, but we have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is important in modulating the pathogenesis of alphavirus infections in the mosquito. However, we report here that infection of mosquitoes with an alphavirus also triggers the production of another class of virus-derived small RNAs that exhibit many similarities to ping-pong-dependent piwi-interacting RNAs (piRNAs). However, unlike ping-pong-dependent piRNAs that have been described previously from repetitive elements or piRNA clusters, our work suggests production in the soma. We also present evidence that suggests virus-derived piRNA-like small RNAs are capable of modulating the pathogenesis of alphavirus infections in dicer-2 null mutant mosquito cell lines defective in viral siRNA production. Overall, our results suggest that a non-canonical piRNA pathway is present in the soma of vector mosquitoes and may be acting redundantly to the siRNA pathway to target alphavirus replication. Mosquitoes defend themselves against viral infection with an innate immune response. Thus, mosquito-borne viral diseases like West Nile fever, dengue fever, and chikungunya fever are transmitted to humans only when the pathogen overcomes these defenses. Despite this, relatively little is known about the immune pathways of the mosquito. We have previously shown that an antiviral response directed by small interfering RNAs (siRNAs) is present in culicine mosquito vectors. However, we show here that another class of virus-derived small RNAs, exhibiting many similarities with ping-pong-dependent piwi-interacting RNAs (piRNAs), is also produced in the soma of culicine mosquitoes. We also show that these piRNA-like small RNAs are capable of mounting an antiviral defense in mosquito cell lines with defective siRNA-based immunity, suggesting that mosquitoes possess redundant RNA-based antiviral responses. This study provides new insights into how a mosquito's immune defenses restrict virus replication and the transmission of mosquito-borne viruses.