Abstract
It has been known for decades that low-fat, high-carbohydrate diets can increase plasma triglyceride levels, but the mechanism for this effect has been uncertain. Recently, new isotopic and nonisotopic methods have been used to determine in vivo whether low-fat, high-carbohydrate diets increase triglyceride levels by stimulating fatty acid synthesis. The results of a series of studies in lean and obese weight-stable volunteers showed that very-low-fat (10%), high-carbohydrate diets enriched in simple sugars increased the fraction of newly synthesized fatty acids, along with a proportionate increase in the concentration of plasma triglyceride. Furthermore, the concentration of the saturated fatty acid, palmitate, increased and the concentration of the essential polyunsaturated fatty acid, linoleate, decreased in triglyceride and VLDL triglyceride. The magnitude of the increase in triglyceride varied considerably among subjects, was unrelated to sex, body mass index, or insulin levels, and was higher when fatty acid synthesis was constantly elevated rather than having a diurnal variation. It was notable that minimal stimulation of fatty acid synthesis occurred with higher fat diets (>30%) or with 10% fat diets enriched in complex carbohydrate. Public health recommendations to reduce dietary fat must take into account the distinct effects of different types of carbohydrate that may increase plasma triglycerides and fatty acid synthesis in a highly variable manner. The mediators and health consequences of this dietary effect deserve further study.