PKSP-dependent reduction of phagolysosome fusion and intracellular kill ofAspergillus fumigatusconidia by human monocyte-derived macrophages

Abstract
Previously, we described the isolation of an Aspergillus fumigatus mutant producing non-pigmented conidia, as a result of a defective polyketide synthase gene, pksP (polyketide synthase involved in pigment biosynthesis). The virulence of the pksP mutant was attenuated in a murine animal infection model and its conidia showed enhanced susceptibility towards damage by monocytes in vitro. Because macrophage-mediated killing is critical for host resistance to aspergillosis, the interaction of both grey-green wild-type conidia and white pksP mutant conidia with human monocyte-derived macrophages (MDM) was studied with respect to intracellular processing of ingested conidia. After phagocytosis, the percentage of wild-type conidia residing in an acidic environment was approximately fivefold lower than that observed for non-pigmented pksP mutant conidia. The phagolysosome formation, as assessed by co-localization of LAMP-1 and cathepsin D with ingested conidia, was significantly lower for wild-type conidia compared with pksP mutant conidia. Furthermore, the intracellular kill of pksP mutant conidia was significantly higher than of wild-type conidia, which was markedly increased by chloroquine, a known enhancer of phagolysosome fusion. Taken together, these findings suggest that the presence of a functional pksP gene in A. fumigatus conidia is associated with an inhibition of phagolysosome fusion in human MDM. These data show for the first time that a fungus has the capability to inhibit the fusion of the phagosome with the lysosome. This finding might help explain the attenuated virulence of pksP mutant strains in a murine animal model and provides a conceptual frame to understand the virulence of A. fumigatus.