Leakage-Aware Dynamic Resource Allocation in Hybrid Energy Powered Cellular Networks

Abstract
Energy harvesting is a promising technique to reduce conventional grid energy consumption, which caters for 5G visions on the green evolution of current cellular networks. To fully exploit the harvested energy, an inefficient factor caused by the battery leakage must be taken into account to tackle the energy dissipation problem, which triggers a new dimensional optimization related to the transmission time. However, most approaches are studied for perfect battery models and neglect the optimization for the transmission time. In this paper, we formulate the battery leakage process into our model to explore the grid energy conservation problem by jointly considering admission control, power allocation, subcarrier assignment, and transmission time determination in cellular networks powered by grid and renewable energy. To tackle this problem, we exploit the Lyapunov optimization technique to develop an online algorithm, referred to as leakage-aware dynamic resource allocation policy (LADRA). Specifically, the LADRA only needs to track the current system states (e.g., channel and energy conditions) but without requiring their prior-knowledge. Furthermore, we prove that the minimum grid energy consumption value can be achieved by our proposed algorithm asymptotically. Simulation results verify the correctness of the theoretical analysis, as well as exhibit the performance improvement against other algorithms in terms of grid energy consumption and queue backlog.
Funding Information
  • National Natural Science Foundation of China (61231008, 61172079, 61201141, 61301176, 91338114)
  • 863 Project (2014AA01A701)
  • 111 Project (B08038)
  • Basic Research Fund in Xidian University (7214497201)