Abstract
A hybrid fast Hankel transform algorithm has been developed that uses several complementary features of two existing algorithms: Anderson’s digital filtering or fast Hankel transform (FHT) algorithm and Chave’s quadrature and continued fraction algorithm. A hybrid FHT subprogram (called HYBFHT) written in standard Fortran-77 provides a simple user interface to call either subalgorithm. The hybrid approach is an attempt to combine the best features of the two subalgorithms in order to minimize the user’s coding requirements and to provide fast execution and good accuracy for a large class of electromagnetic problems involving various related Hankel transform sets with multiple arguments. Special cases of Hankel transforms of double‐order and double‐argument are discussed, where use of HYBFHT is shown to be advantageous for oscillatory kernel functions.