Distribution of 1,25-Dihydroxyvitamin D3 Receptor Immunoreactivity in the Limbic System of the Rat

Abstract
We used immunocytochemistry to obtain a complete cellular and subcellular mapping of the 1,25-dihydroxyvitamin D3 receptor protein (VDR) in the rat limbic system. We observed specific VDR immunostaining in the nucleus as well as in the perinuclear cytoplasm of neuronal cells. The limbic system consists of a variety of neuronal structures, and is known to have influence on memory, behavior, emotions and reproduction. In the hippocampal formation, we found strong nuclear staining as well as less distinguished cytoplasmic VDR staining in CA1, CA3 and CA4. The CA2 area showed a unique cytoplasmic predominance of VDR. The amygdala was found to exhibit specific patterns of VDR distribution in the various regions of the nucleus. We observed distinct differences of VDR localization within the limbic preoptic areas of the hypothalamus. Further parts of the brain we analyzed included the mammillary bodies, the indusium griseum and the cingulate cortex. The subcellular distribution of VDR in regions of the limbic system suggests a specific functional role of the receptor protein and indicates a role for calcitriol as a neuroactive steroid.