Speculative synchronization

Abstract
Barriers, locks, and flags are synchronizing operations widely used programmers and parallelizing compilers to produce race-free parallel programs. Often times, these operations are placed suboptimally, either because of conservative assumptions about the program, or merely for code simplicity.We propose is key to our proposal: in any speculative barrier, lock, or flag, the existence of one or more safe threads at all times guarantees forward progress, even in the presence of access conflicts or speculative buffer overflow. Our proposal requires simple hardware and no programming effort. Furthermore, it can coexist with conventional synchronization at run time.We use simulations to evaluate 5 compiler- and hand-parallelized applications. Our results show a reduction in the time lost to synchronization of 34% on average, and a reduction in overall program execution time of 7.4% on average.

This publication has 24 references indexed in Scilit: