Abstract
A multiple-time-scale turbulence model based on a single point closure and a simplified split-spectrum method is presented. In the model the effect of the ratio of the production rate to the dissipation rate on the eddy viscosity is modeled using multiple time scales and a variable partitioning of the turbulent kinetic energy spectrum. Example problems included are a wall-jet flow, a wake-boundary-layer interaction flow, a backward-facing step flow, and a confined coaxial swirling jet. The multiple-time-scale turbulence model yields significantly improved computational results compared with those obtained using the k-c turbulence model. It is also shown that the present turbulence model can resolve the viscous superlayer of turbulent flows.