DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes

Abstract
DNA microarrays constructed with full length ORFs from Shewanella oneidensis, MR-1, were hybridized with genomic DNA from nine other Shewanella species and Escherichia coli K-12. This approach enabled visualization of relationships between organisms by comparing individual ORF hybridizations to 164 genes and is further amenable to high-density high-throughput analyses of complete microbial genomes. Conserved genes (arcA and ATP synthase) were identified among all species investigated. The mtr operon, which is involved in iron reduction, was poorly conserved among other known metal-reducing Shewanella species. Results were most informative for closely related organisms with small subunit rRNA sequence similarities greater than 93% and gyrB sequence similarities greater than 80%. At this level of relatedness, the similarity between hybridization profiles was strongly correlated with sequence divergence in the gyrB gene. Results revealed that two strains of S. oneidensis (MR-1 and DLM7) were nearly identical, with only 3% of the ORFs hybridizing poorly, in contrast to hybridizations with Shewanella putrefaciens, formerly considered to be the same species as MR-1, in which 63% of the ORFs hybridized poorly (log ratios below −0.75). Genomic hybridizations showed that genes in operons had consistent levels of hybridization across an operon in comparison to a randomly sampled data set, suggesting that similar applications will be informative for identification of horizontally acquired genes. The full value of microbial genomic hybridizations lies in providing the ability to understand and display specific differences between closely related organisms providing a window into understanding microheterogeneity, bacterial speciation, and taxonomic relationships.