Origins of the inhibiting effects of nasal CPAP on nonnutritive swallowing in newborn lambs

Abstract
The present study investigated the mechanism by which continuous positive airway pressure (CPAP) suppresses nonnutritive swallowing (NNS) during quiet sleep (QS) in newborn lambs. Eighteen full-term lambs were chronically instrumented and evenly distributed into three separate groups to determine the extent to which modulation of NNS may be attributed to stimulation of upper airway and/or bronchopulmonary mechanoreceptors. Six lambs were tracheotomized, six other lambs underwent a two-step bilateral intrathoracic vagotomy, and the remaining six lambs underwent chronic laryngotracheal separation (isolated upper airway group). Forty-eight hours after surgery, each nonsedated lamb underwent polysomnographic recordings on three consecutive days. States of alertness, NNS and respiratory movements were recorded. Results demonstrate that a CPAP of 6 cmH2O inhibited NNS during QS while administered directly on the lower airways and that bivagotomy prevented this inhibition. However, application of CPAP on the upper airways only also inhibited NNS during QS. Finally, the application of a CPAP of 6 cmH2O had no systematic effect on NNS-breathing coordination (assessed by the respiratory phase preceding and following NNS). In conclusion, our results suggest that bronchopulmonary receptors are implicated in the inhibiting effects of nasal CPAP of 6 cmH2O on NNS in all our experimental conditions, whereas upper airway receptors are only implicated in certain conditions.