Critical coordination of innate immune defense against Toxoplasma gondii by dendritic cells responding via their Toll-like receptors

Abstract
Toll-like receptors (TLRs) play an important role in host defense against a variety of microbial pathogens. We addressed the mechanism by which TLRs contribute to host defense against the lethal parasite Toxoplasma gondii by using mice with targeted inactivation of the TLR adaptor protein myeloid differentiation primary response gene 88 (MyD88) in different innate cell types. Lack of MyD88 in dendritic cells (DCs), but not in macrophages or neutrophils, resulted in high susceptibility to the T. gondii infection. In the mice deficient in MyD88 in DCs, the early IL-12 response by DCs was ablated, the IFN-γ response by natural killer cells was delayed, and the recruited inflammatory monocytes were incapable of killing the T. gondii parasites. The T-cell response, although attenuated in these mice, was sufficient to eradicate the parasite during the chronic stage, provided that defects in DC activation were compensated by IL-12 treatment early after infection. These results demonstrate a central role of DCs in orchestrating the innate immune response to an intracellular pathogen and establish that defects in pathogen recognition by DCs can predetermine sensitivity to infection.