THE EFFECTS OF THROMBOXANE INHIBITORS ON THE MICROVASCULAR AND TUMOR RESPONSE TO PHOTODYNAMIC THERAPY

Abstract
Vascular stasis and tissue ischemia are known to cause tumor cell death in several experimental models after photodynamic therapy (PDT); however, the mechanisms leading to this damage remain unclear. Because previous studies indicated that thromboxane release is implicated in vessel damage, we further examined the role of thromboxane in PDT. Rats bearing chondrosarcoma were injected with 25 mg/kg Photofrin (intravenously) 24 h before treatment. Light (135 J/cm2, 630 nm) was delivered to the tumor area after injection of one of the following inhibitors: (1) R68070: a thromboxane synthetase inhibitor; (2) SQ-29548: a thromboxane receptor antagonist; and (3) Flunarizine: an inhibitor of platelet shape change. Systemic thromboxane levels were determined. Vessel constriction and leakage were evaluated by intravital microscopy. Tumor response was assessed after treatment. Thromboxane levels were decreased more than 50% with SQ-29548 as compared to controls. Thromboxane levels in animals given R68070 and Flunarizine remained at baseline levels. SQ-29548 and R68070 reduced vessel constriction compared to controls, while Flunarizine totally prevented vessel constriction. R68070 and SQ-29548 inhibited vessel permeability compared to PDT controls; Flunarizine did not. Animals given these inhibitors showed markedly reduced tumor cure. These results indicate that the release of thromboxane is linked to the vascular response in PDT.