Predicting warfarin dosage in European–Americans and African–Americans using DNA samples linked to an electronic health record

Abstract
Aim: Warfarin pharmacogenomic algorithms reduce dosing error, but perform poorly in non-European–Americans. Electronic health record (EHR) systems linked to biobanks may allow for pharmacogenomic analysis, but they have not yet been used for this purpose. Patients & methods: We used BioVU, the Vanderbilt EHR-linked DNA repository, to identify European–Americans (n = 1022) and African–Americans (n = 145) on stable warfarin therapy and evaluated the effect of 15 pharmacogenetic variants on stable warfarin dose. Results: Associations between variants in VKORC1, CYP2C9 and CYP4F2 with weekly dose were observed in European–Americans as well as additional variants in CYP2C9 and CALU in African–Americans. Compared with traditional 5 mg/day dosing, implementing the US FDA recommendations or the International Warfarin Pharmacogenomics Consortium (IWPC) algorithm reduced error in weekly dose in European–Americans (13.5–12.4 and 9.5 mg/week, respectively) but less so in African–Americans (15.2–15.0 and 13.8 mg/week, respectively). By further incorporating associated variants specific for European–Americans and African–Americans in an expanded algorithm, dose-prediction error reduced to 9.1 mg/week (95% CI: 8.4–9.6) in European–Americans and 12.4 mg/week (95% CI: 10.0–13.2) in African–Americans. The expanded algorithm explained 41 and 53% of dose variation in African–Americans and European–Americans, respectively, compared with 29 and 50%, respectively, for the IWPC algorithm. Implementing these predictions via dispensable pill regimens similarly reduced dosing error. Conclusion: These results validate EHR-linked DNA biorepositories as real-world resources for pharmacogenomic validation and discovery. Original submitted 24 August 2011; Revision submitted 9 November 2011