NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly

Abstract
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein γ-tubulin. In mammals, γ-tubulin associates with additional proteins into a large complex, the γ-tubulin ring complex (γTuRC). We characterize NEDD1, a centrosomal protein that associates with γTuRCs. We show that the majority of γTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of γ-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to γTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of γ-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of γ-tubulin to the centrosome.