Regulatory effects of estrogen on acute lung inflammation in mice

Abstract
The role of estrogen in the regulation of the inflammatory response is not well defined. In this study, we investigated the effects of ovarian hormones on the acute inflammatory response in mouse lungs. Acute lung injury was induced by intratracheal instillation of bacterial lipopolysaccharide (LPS) in male, female, and ovariectomized (OVX) mice. End points of injury were polymorphonuclear neutrophil (PMN) content in bronchoalveolar lavage (BAL) fluids, myeloperoxidase activity in whole lung, and leak of albumin into the lung. After intratracheal instillation of LPS, all end points of injury were substantially increased in male and OVX mice compared with the female mice with intact ovaries. BAL fluids of all mice showed similar levels of chemokines (macrophage inflammatory protein MIP-2, KC, and monocyte chemoattractant proteins MCP-1 and MCP-3) and TNF-α, but enhanced levels of IL-1β were found in OVX and male mice. Serum levels of IL-6 and ICAM-1 levels in lung homogenates from OVX and male mice, compared with those in female mice with intact ovaries, were also enhanced after instillation of LPS. Albumin and PMN content in LPS-injured lungs were reduced to levels found in female mice after administration of estradiol in OVX mice and corresponded to reduced IL-1β, IL-6, and ICAM-1 levels. These data suggest that estrogen suppresses lung inflammatory responses in mice through an effect on vascular cell adhesion molecules and proinflammatory mediators.