Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics

Abstract
The rheological properties of colloidal suspensions of spheres and rods have been studied using dissipative particle dynamics (DPD). We have measured the viscosity as a function of shear rate and volume fraction of the suspended particles. The viscosity of a 30 vol% suspension of spheres displays characteristic shear-thinning behaviour as a function of shear rate. The values for the low- and high-shear viscosity are in good agreement with experimental data. For higher particulate densities, good results are obtained for the high-shear viscosity, although the viscosity at low shear rates shows a dependence on the size of the suspended spheres. Dilute suspensions of rods show an intrinsic viscosity which is in excellent agreement with theoretical results. For concentrated rod suspensions, the viscosity increases with the third power of the volume fraction. We find the same scaling behaviour as Doi and Edwards for the semidilute regime, although the explanation is unclear. The DPD simulation technique therefore emerges as a useful tool for studying the rheology of particulate suspensions.