Low strength wastewater treatment under low temperature conditions by a novel sulfur redox action process

Abstract
The objective of this research is to make a novel wastewater treatment process activated by a sulfur-redox cycle action of microbes in low temperature conditions. This action is carried out by sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB). The process was comprised of a UASB reactor as pre-treatment and an aerobic downflow hanging sponge (DHS) reactor as post-treatment. As the results of reactor operation, the whole process achieved that over 90% of CODcr removal efficiency, less than 30 mgCODcr/L (less than 15 mgBOD/L) of final effluent, at 12 h of HRT and at 8 °C of UASB reactor temperature. Acetobacterium sp. was detected as the predominant species by PCR-DGGE method targeting 16SrDNA with band excision and sequence analysis. In the UASB reactor, various species of sulfate-reducing bacterium, Desulfobulbus sp., Desulfovibrio sp., and Desulfomicrobium sp., were found by cloning analysis. In the DHS reactor, Tetracoccus sp. presented as dominant. The proposed sulfur-redox action process was considered as an applicable process for low strength wastewater treatment in low temperature conditions.