Response of buried steel pipelines subjected to relative axial soil movement

Abstract
The performance of buried steel pipelines subjected to relative soil movements in the axial direction was investigated using full-scale pullout testing in a soil chamber. Measured axial soil loads from pullout testing of pipes buried in loose dry sand were comparable to those predicted using guidelines commonly used in practice. The peak values of axial pullout resistance observed on pipes buried in dense dry sand were several-fold (in excess of 2 times) higher than the predictions from guidelines; the observed high axial pullout resistance is primarily due to a significant increase in normal soil stresses on the pipelines, resulting from constrained dilation of dense sand during interface shear deformations. This reasoning was confirmed by direct measurement of soil stresses on pipes during full-scale testing and numerical modeling. The research findings herein suggest that the use of the coefficient of lateral earth pressure at-rest (K0) to compute axial soil loads, employing equations recommended in common guidelines, should be undertaken with caution for pipes buried in soils that are likely to experience significant shear-induced dilation.