CytochromecRelease and Mitochondria Involvement in Programmed Cell Death Induced by Acetic Acid inSaccharomyces cerevisiae

Abstract
Evidence is presented that mitochondria are implicated in the previously described programmed cell death (PCD) process induced by acetic acid in Saccharomyces cerevisiae. In yeast cells undergoing a PCD process induced by acetic acid, translocation of cytochrome c (CytC) to the cytosol and reactive oxygen species production, two events known to be proapoptotic in mammals, were observed. Associated with these events, reduction in oxygen consumption and in mitochondrial membrane potential was found. Enzymatic assays showed that the activity of complexbc1 was normal, whereas that of cytochrome c oxidase (COX) was strongly decreased. This decrease is in accordance with the observed reduction in the amounts of COX II subunit and of cytochromesa+a3. The acetic acid-induced PCD process was found to be independent of oxidative phosphorylation because it was not inhibited by oligomycin treatment. The inability ofS. cerevisiae mutant strains (lacking mitochondrial DNA, heme lyase, or ATPase) to undergo acetic acid-induced PCD and in the ATPase mutant (knockout in ATP10) the absence of CytC release provides further evidence that the process is mediated by a mitochondria-dependent apoptotic pathway. The understanding of the involvement of a mitochondria-dependent apoptotic pathway inS. cerevisiae PCD process will be most useful in the further elucidation of an ancestral pathway common to PCD in metazoans.