3–14 Micron Spectroscopy of Comets C/2002 O4 (Honig), C/2002 V1 (NEAT), C/2002 X5 (Kudo‐Fujikawa), C/2002 Y1 (Juels‐Holvorcem), and 69P/Taylor and the Relationships among Grain Temperature, Silicate Band Strength, and Structure among Comet Families

Abstract
We report 3 - 13 micron spectroscopy of 4 comets observed between August 2002 and February 2003: C/2002 O4 (Honig) on August 1, 2002, C/2002 V1 (NEAT) on Jan. 9 and 10, 2003, C/2002 X5 (Kudo-Fujikawa) on Jan. 9 and 10, 2003, and C/2002 Y1 (Juels-Holvorcem) on Feb. 20, 2003. In addition, we include data obtained much earlier on 69P/Taylor (February 9, 1998) but not previously published. For Comets Taylor, Honig, NEAT, and Kudo-Fujikawa, the silicate emission band was detected, being approximately 23%, 12%, 15%, and 10%, respectively, above the continuum. The data for Comet Juels-Holvorcem were of insufficient quality to detect the presence of a silicate band of comparable strength to the other three objects, and we place an upper limit of 24% on this feature. The silicate features in both NEAT and Kudo-Fujikawa contained structure indicating the presence of crystalline material. Combining these data with those of other comets, we confirm the correlation between silicate band strength and grain temperature of Gehrz & Ney (1992) and Williams et al. (1997) for dynamically new and long period comets, but the majority of Jupiter family objects may deviate from this relation. The limited data available on Jupiter family objects suggest that they may have silicate bands that are slightly different from the former objects. Finally, when compared to the silicate emission bands observed in pre-main sequence stars, the dynamically new and long period comets most closely resemble the more evolved stellar systems, while the limited data (in quantity and quality) on Jupiter family objects seem to suggest that these have spectra more like the less-evolved stars.Comment: 45 pages, 12 figure