Endonuclease III is an iron-sulfur protein

Abstract
Elemental analyses, Mössbauer, and EPR data are reported to show that endonuclease III of Escherichia coli is an iron-sulfur protein. Mössbauer spectra of protein freshly prepared from E. coli grown on 57Fe-enriched medium demonstrate that the native enzyme contains a single 4Fe-4S cluster in the 2+ oxidation state, with a net spin of zero. Upon treatment with ferricyanide, a fraction (less than 25%) of the clusters is oxidized into a state which yields an EPR spectrum near g = 2.01 typical of a 3Fe-4S cluster. The magnetic field dependence of the linear electric field effect verifies this assignment. Electron spin echo modulation on the g = 2.01 form of the protein in deuterated solvent indicates the presence of exchangeable protons in the vicinity of the 3Fe-4S cluster. The data obtained show that the [4Fe-4S]2+ cluster of the native enzyme is resistant to either oxidation or reduction, although photoreduction elicited a g = 1.94 type EPR signal characteristic of a [4Fe-4S]1+ cluster. These studies show that endonuclease III is unique in being both a DNA repair enzyme and an iron-sulfur protein. The function of the 4Fe-4S cluster remains to be established.