Droplet microfluidics for CTC-based liquid biopsy: a review

Abstract
Circulating tumor cells (CTCs) are important biomarkers of liquid biopsy. The number and heterogeneity of CTCs play an important role in cancer diagnosis and personalized medicine. However, owing to the low-abundance biomarkers of CTCs, conventional assays are only able to detect CTCs at the population level. Therefore, there is a pressing need for a highly sensitive method to analyze CTCs at the single-cell level. As an important branch of microfluidics, droplet microfluidics is a high-throughput and sensitive single-cell analysis platform for the quantitative detection and heterogeneity analysis of CTCs. In this review, we focus on the quantitative detection and heterogeneity analysis of CTCs using droplet microfluidics. Technologies that enable droplet microfluidics, particularly high-throughput droplet generation and high-efficiency droplet manipulation, are first discussed. Then, recent advances in detecting and analyzing CTCs using droplet microfluidics from the different aspects of nucleic acids, proteins, and metabolites are introduced. The purpose of this review is to provide guidance for the continued study of droplet microfluidics for CTC-based liquid biopsy.
Funding Information
  • National Key Research and Development Program of China (2021YFC2103300)
  • National Natural Science Foundation of China (51875103)
  • Natural Science Foundation of Jiangsu Province (BK20190064)