Seasonal changes in glucose, fructose, sucrose, and fructans in the roots of dandelion

Abstract
Roots of dandelion were exhumed from the soil monthly from 1997 to 1999 near Scottsbluff, NE, to assess the seasonal changes in total sugars, glucose, fructose, sucrose, and fructans. In the spring, the initiation of plant growth was accompanied by increased fructose and, to a lesser degree, glucose as a percentage of total sugars. During June, July, and August, the percentage of total sugars with a middle to high degree of polymerization (DP) fructans increased. The DP in fructans changed with reduced rainfall and was associated with increased fructose and decreased high-DP fructans as a percentage of total sugars. Decreasing or freezing soil temperatures in the fall were associated with increased fructose and decreased high-DP fructans as a percentage of total sugars. When soil froze in December, the percentage of total sugars as sucrose and low-DP fructans increased and mid- to high-DP fructans decreased. The seasonal fluctuations of glucose, fructose, sucrose, and various fructan polymers may be one mechanism that allows dandelion to adapt to environmental stresses and gain a competitive advantage over other plants in the community. An understanding of these seasonal fluctuations in sugars may also allow better timing of biological, mechanical, and chemical control practices for improved plant management.