The work function of n-ZnO deduced from heterojunctions with Si prepared by ALD

Abstract
Highly doped n-type ZnO films have been grown on n-type and p-type Si substrates by atomic layer deposition (ALD). Transmission electron microscopy shows columnar growth of the ZnO films with randomly oriented grains and a very thin interfacial layer of SiO x (x ⩽ 2) with a thickness below 0.4 nm to the Si substrate. Current–voltage and capacitance–voltage measurements performed at temperatures from 50 to 300 K reveal a strong rectifying behaviour on both types of substrates with an ideality factor close to unity between 180 and 280 K. Using the classical approach of thermionic emission, the barrier heights of the ZnO/n-Si and ZnO/p-Si junctions have been deduced and consistent values are obtained yielding a work function of n-type ZnO close to 4.65 eV.