Molecular Investigations of a Locally Acquired Case of Melioidosis in Southern AZ, USA

Abstract
Melioidosis is caused by Burkholderia pseudomallei, a Gram-negative bacillus, primarily found in soils in Southeast Asia and northern Australia. A recent case of melioidosis in non-endemic Arizona was determined to be the result of locally acquired infection, as the patient had no travel history to endemic regions and no previous history of disease. Diagnosis of the case was confirmed through multiple microbiologic and molecular techniques. To enhance the epidemiological analysis, we conducted several molecular genotyping procedures, including multi-locus sequence typing, SNP-profiling, and whole genome sequence typing. Each technique has different molecular epidemiologic advantages, all of which provided evidence that the infecting strain was most similar to those found in Southeast Asia, possibly originating in, or around, Malaysia. Advancements in new typing technologies provide genotyping resolution not previously available to public health investigators, allowing for more accurate source identification. Melioidosis is a bacterial disease caused by percutaneous inoculation, aspiration or ingestion of the soil bacteria Burkholderia pseudomallei. Melioidosis is primarily found in Southeast Asia and Northern Australia, and, to a lesser degree, nearby regions. A recent case of melioidosis in Southwestern United States (Southern Arizona) prompted a detailed epidemiological and molecular investigation to discover the source of infection. The authors describe the use of multiple genomic analysis tools to aid in this investigation. The results of these analyses uniformly identified Southeast Asia as the source of the strain that infected the patient, however the epidemiological investigation had determined the patient had no international travel or known exposures to Southeast Asian products. New cutting edge technologies, such as next generation sequencing, are quickly being adapted into epidemiologic investigations, particularly for cases and outbreaks of unknown origin, although older, mature technologies with larger existing databases will still be needed for appropriate comparative analyses.