Oligosaccharide/Silicon-Containing Block Copolymers with 5 nm Features for Lithographic Applications

Abstract
Block copolymers demonstrate potential for use in next-generation lithography due to their ability to self-assemble into well-ordered periodic arrays on the 3–100 nm length scale. The successful lithographic application of block copolymers relies on three critical conditions being met: high Flory–Huggins interaction parameters (χ), which enable formation of N) enabling formation of 5 nm feature diameters, incorporate silicon in one block for oxygen reactive ion etch contrast, and exhibit bulk and thin film self-assembly of hexagonally packed cylinders facilitated by a combination of spin coating and solvent annealing techniques. As observed by small angle X-ray scattering and atomic force microscopy, these materials exhibit some of the smallest block copolymer features in the bulk and in thin films reported to date.