Blood lactate concentration increases as a continuous function in progressive exercise

Abstract
The relationship between arterialized blood lactate concentration [( La-]) and O2 uptake (VO2) was examined during a total of 23 tests by eight subjects. Exercise was on a cycle ergometer with work rate incremented from loadless pedaling to exhaustion as a 50-W/min ramp function. Two different mathematical models were studied. One model employed a log-log transformation of [La-] and VO2 to yield [La-] threshold as proposed by Beaver et al. (J. Appl. Physiol. 59: 1936–1940, 1985). The other model was a continuous exponential plus constant of the form La- = a + b[exp(cVO2)]. In 21 of 23 data sets, the mean square error (MSE) of the continuous model was less than that of the log-log model (P less than 0.001). The MSE was on average 3.5 times greater in the log-log model than in the continuous model. The residuals were randomly distributed about the line of best fit for the continuous model. In contrast, the log-log model showed a nonrandom pattern indicating an inappropriate model. As an index of the position of the [La-]-VO2 continuous model, the VO2 at which the rate of increase of [La-] equaled the rate of increase of VO2 (d[La-]/dVO2 = 1) was determined. This VO2 was 2.241 +/- 0.081 l/min, which averaged 64.6% of maximal VO2. It is proposed that this lactate slope index could be used as a relative indicator of fitness instead of the previously applied threshold concept. The change in [La-] could be better described mathematically by a continuous model rather than the threshold model of Beaver et al.

This publication has 3 references indexed in Scilit: