IL-6 Deficiency Attenuates Murine Diet-Induced Non-Alcoholic Steatohepatitis

Abstract
The role of inflammation in the pathogenesis of non-alcoholic steatohepatitis (NASH), a common cause of liver disease, is still poorly understood. This study aimed at assessing the involvement of a major inflammatory cytokine, IL-6, in NASH. Steatohepatitis was induced by feeding wild-type or IL-6−/− mice for 5 weeks with a methionine and choline-deficient (MCD) diet. Whereas MCD diet-induced weight loss and decreases in serum glucose, cholesterol and triglyceride levels were similar in both genotypes, serum alanine aminotransferase was less elevated in IL-6−/− mice than in wild-type animals. Despite having a comparable liver steatosis score, IL-6-deficient mice exhibited less lobular inflammation than their wild-type littermates. Liver gene expression of TGF-β and MCP-1 was also strongly attenuated in mutant mice; a more modest reduction was observed for PPAR-γ and F4/80 transcripts as well as proteins. Chromatographic analysis of liver lipids demonstrated that MCD diet induced in normal and mutant mice a similar decrease in the ratio of phosphatidylcholine to phosphatidylethanolamine. However, the diet-induced increase in the levels of sphingomyelin and ceramide was less important in IL-6−/− mice. Altogether, these results indicate that IL-6 deficiency does not block the development of NASH; yet, IL-6 plays a critical role in the accompanying liver inflammation.