Cerium oxide nanoparticles in cancer

Abstract
Cerium oxide nanoparticles in cancer Ying Gao,1 Kan Chen,2,* Jin-lu Ma,1,* Fei Gao3 1Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; 2School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, People's Republic of China; 3Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, People's Republic of China *These authors contributed equally to this work With the development of many nanomedicines designed for tumor therapy, the diverse abilities of cerium oxide nanoparticles (CONPs) have encouraged researchers to pursue CONPs as a therapeutic agent to treat cancer. Research data have shown CONPs to be toxic to cancer cells, to inhibit invasion, and to sensitize cancer cells to radiation therapy and chemotherapy. CONPs also display minimal toxicity to normal tissues and provide protection from various forms of reactive oxygen species generation. Differential cytotoxicity is important for anticancer drugs to distinguish effectively between tumor cells and normal cells. The antioxidant capabilities of CONPs, which enable cancer therapy protection, have also resulted in the exploration of these particles as a potential anticancer treatment. Taken together, CONPs might be a potential nanomedicine for cancer therapy and this review highlights the current research into CONPs as a novel therapeutic for the treatment of cancer. Keywords: cerium oxide nanoparticles, cancer treatment, radioprotection, radiosensitization