Liquid Crystalline Order from ortho-Phenylene Ethynylene Macrocycles

Abstract
Triangular ortho-phenylene ethynylene (o-PE) cyclic trimers represent a novel member of shape-persistent macrocycles. Shape-persistent cyclic structures remain of great interest as molecular components in the fields of supramolecular materials, host-guest chemistry, and materials science. Novel discotic liquid crystalline properties are reported from triangular-shaped o-PE macrocycles containing branched alkoxy- and/or triethylene glycol (TEG) side chains using polarized optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The macrocycles self-assemble into thermotropic rectangular columnar (Colr) (for M1), hexagonal columnar (Colh) (for M2), and discotic nematic (for M3) mesophases at room temperature. This work shows clearly that electron-rich PE macrocycles can form LC materials. Alkyl side chains in M1 promote order, while hydrophilic side chains of M2 generate an amphiphilic structure that provides a different driving force for organization. The ability to create ordered self-assembling materials from these novel electron-rich macrocycles is important in nanotechnology.