Characterization of a new PEPD allele causing prolidase deficiency in two unrelated patients: natural-occurrent mutations as a tool to investigate structure–function relationship

Abstract
Prolidase deficiency (PD) is a rare autosomal recessive disorder characterized mainly by skin lesions of the legs and feet, mental retardation, and respiratory infections. Mutations at the PEPD locus, located on chromosome 19, are responsible for this disease. We identified a new PEPD allele in two unrelated Portuguese PD patients by analyses of reverse transcribed PCR-amplified cDNA. We used SSCP analysis of seven overlapping fragments spanning the entire coding region of the gene and detected abnormal SSCP bands in two of them: PD3 (nt 425-743) and PD4 (nt 661-973). Direct sequencing of the mutant cDNA and genomic DNA revealed a new homozygous 3-bp deletion (Y231del) in both cases. Transient expression in PD fibroblasts of wild-type and mutant prolidase cDNA confirmed reduced activity of the construct carrying the 3-bp deletion. The mutation results in a loss of prolidase activity in skin fibroblasts. Intracellular accumulation of Gly-Pro dipeptide in long-term cultured fibroblasts was detected by capillary electrophoresis. The mutation falls in the alpha2 domain of the "pita bread" structure proposed for E. coli and human prolidase by Bazan et al. on the bases of their sequence homology with E. coli methionine aminopeptidase. Taking into account the effects of the described mutations on stability and activity of the enzyme, we propose the identification of three different functional regions.