Role of superoxide and hydrogen peroxide in cell lysis during irradiation in vitro of Ehrlich ascitic carcinoma cells in the presence of melanin

Abstract
The reactive species involved in the cell lysis during ultraviolet irradiation of Ehrlich ascitic carcinoma cells in the presence of red hair melanin (RHM) were investigated by determining 51Cr release from labeled cells. Cysteine at 1 mM in the presence of RHM increased the cell lysis during the incubation in the dark as well as during irradiation; this lysis was enhanced by superoxide dismutase (SOD). Catalase abolished the dark reaction and inhibited the cysteine-induced increase of cell lysis during irradiation. The cell lysis by the superoxide-generating xanthine oxidase system was not significantly increased by SOD, but was significantly decreased by nitroblue tetrazolium and completely abolished by catalase. The cell lysis induced by the supernatants obtained from the suspensions of RHM either irradiated alone or with cysteine was abolished by catalase. Sediments of irradiated RHM when incubated in the dark with the cells did not release 51Cr. Irradiation of the cells in the presence of the same sediments produced lysis which was not inhibited by catalase. These studies suggest that superoxide per se is not toxic to the cells, but the H2O2 formed by dismutation of superoxide produces cell lysis either directly or by generating OH through Fenton-type reactions. A large part of the cell lysis seen during irradiation of cells in the presence of RHM is not due to H2O2, but may possibly be due to the melanin free radicals formed during irradiation.