Abstract
Caloric restriction (CR), which has been investigated by gerontologists for more than 60 yr, provides the only intervention tested to date in mammals (typically mice and rats) that repeatedly and strongly increases maximum life span while retarding the appearance of age-associated pathologic and biologic changes. Although the large majority of rodent studies have initiated CR early in life (1-3 mo of age), CR started in midadulthood (at 12 mo) also extends maximum life span in mice. Two main questions now face gerontologists investigating CR. By what mechanisms does CR retard aging and disease processes in rodents? There is evidence to suggest that age-associated increases in oxidative damage may represent a primary aging process that is attenuated by CR. Will CR exert similar actions in primates? Studies in rhesus monkeys subjected to CR and limited human epidemiological data support the notion of human translatability. However, no matter what the answers are to these questions, the prolongation of the health span and life span of rodents by CR has major implications for many disciplines, including toxicologic pathology, and raises important questions about the desirability of ad libitum feeding.