The Plasticity of Regulatory T Cell Function

Abstract
Regulatory T cells (Tregs) can suppress a wide variety of cell types, in diverse organ sites and inflammatory conditions. Whereas Tregs possess multiple suppressive mechanisms, the number required for maximal function is unclear. Furthermore, whether any interrelationship or cross-regulatory mechanisms exist to orchestrate and control their utilization is unknown. In this study, we assessed the functional capacity of Tregs lacking the ability to secrete both IL-10 and IL-35, which individually are required for maximal Treg activity. Surprisingly, IL-10/IL-35 double-deficient Tregs were fully functional in vitro and in vivo. Loss of IL-10 and IL-35 was compensated for by a concurrent increase in cathepsin E (Ctse) expression, enhanced TRAIL (Tnfsf10) expression, and soluble TRAIL release, rendering IL-10/IL-35 double-deficient Tregs functionally dependent on TRAIL in vitro and in vivo. Lastly, whereas C57BL/6 Tregs are normally IL-10/IL-35 dependent, BALB/c Tregs, which express high levels of cathepsin E and enhanced TRAIL expression, are partially TRAIL dependent by default. These data reveal that cross-regulatory pathways exist that control the utilization of suppressive mechanisms, thereby providing Treg functional plasticity.