Hydrodynamic Performance of a Thrust Bearing with Micropatterned Pads

Abstract
The primary objective of this study was to investigate the influence of surface texturing on hydrodynamic lubrication of tilting-pad thrust bearings in terms of bearing power loss, operating temperature, and oil-film thickness. For this purpose, the working faces of six thrust pads from a 228.6-mm-outer-diameter bearing were textured. The textured surface consisted of a system of crossing channels of less than 10 μm in depth. Tests were conducted with a VG68 mineral turbine oil supplied to the bearings at a constant temperature of 50°C and flow rate of 15 L/min. The following parameters were measured: frictional torque, pad and collar temperatures, oil-film thickness, and pressure profiles along two circumferential lines. No significant change in collar and pad temperature could be observed when the patterned bearing was used. However, the textured bearing showed a tendency to exhibit lower power loss especially when an optimum oil flow supply rate was used. At the same time, inlet and outlet film thicknesses for the patterned bearing showed larger values than those obtained during tests on the plain babbitt pads.