Easy and Fast Sensor Fault Detection and Isolation Algorithm for Electrical Drives

Abstract
This paper focuses on sensor fault detection and isolation (FDI) for electrical systems. A new, easy and fast FDI algorithm is proposed, keeping system performances unchanged under certain faulty sensor conditions when reconfigurations are available. The proposed FDI algorithm is derived from a parity space approach and is based on temporal redundancies. It is insensitive to parameter variations since no model knowledge is required. Also, it is available for a large class of electrical systems such as single- or three-phase power converters, dc or ac electrical drives, etc. Moreover, the residual threshold used for FDI is accurately defined and is suitable for the whole operating range. Simulations results are presented to illustrate the good functionality of theoretical developments. Numerous experimental results are also shown to validate the effectiveness of the proposed FDI algorithm and to highlight its advantages for the control of electrical systems.