Attenuation of Induced Hyperthyroidism in Mice by Pretreatment with Thyrotropin Receptor Protein: Deviation of Thyroid-Stimulating to Nonfunctional Antibodies

Abstract
Graves’-like hyperthyroidism is induced by immunizing BALB/c mice with adenovirus expressing the thyrotropin receptor (TSHR) or its A-subunit. Nonantigen-specific immune strategies can block disease development and some reduce established hyperthyroidism, but these approaches may have unforeseen side effects. Without immune stimulation, antigens targeted to the mannose receptor induce tolerance. TSHR A-subunit protein generated in eukaryotic cells binds to the mannose receptor. We tested the hypothesis that eukaryotic A-subunit injected into BALB/c mice without immune stimulation would generate tolerance and protect against hyperthyroidism induced by subsequent immunization with A-subunit adenovirus. Indeed, one sc injection of eukaryotic, glycosylated A-subunit protein 1 wk before im A-subunit-adenovirus immunization reduced serum T4 levels and the proportion of thyrotoxic mice decreased from 77 to 22%. Prokaryotic A-subunit and other thyroid proteins (thyroglobulin and thyroid peroxidase) were ineffective. A-subunit pretreatment reduced thyroid-stimulating and TSH-binding inhibiting antibodies, but, surprisingly, TSHR-ELISA antibodies were increased. Rather than inducing tolerance, A-subunit pretreatment likely expanded B cells that secrete nonfunctional antibodies. Follow-up studies supported this possibility and also showed that eukaryotic A-subunit administration could not reverse hyperthyroidism in mice with established disease. In conclusion, glycosylated TSHR A-subunit is a valuable immune modulator when used before immunization. It acts by deviating responses away from pathogenic toward nonfunctional antibodies, thereby attenuating induction of hyperthyroidism. However, this protein treatment does not reverse established hyperthyroidism. Our findings suggest that prophylactic TSHR A-subunit protein administration in genetically susceptible individuals may deviate the autoantibody response away from pathogenic epitopes and provide protection against future development of Graves’ disease.