The Role of Simulators for Smart Grid Development

Abstract
The implementation of highly realistic real-time, massive, online, multi-time frame simulations is proposed as a means for building a common vision of smart grid functions among politicians, regulators, managers, operators, engineers, and technicians. These massive simulations will include hundreds of participants that play roles of reliability coordinators, transmission operators, distribution operators, power plant operators, and substation operators. These highly visible drills can demonstrate how the new smart grid systems, people, and processes can all work together economically and reliably. The industry, especially smart grid system designers, can get feedback from low cost, safe, and easily configurable simulations instead of waiting for expensive and hardwired deployments. Direct load control of millions of customer appliances is identified as a silver bullet to build self-healing and maximal flow smart grids that can accommodate large penetrations of intermittent wind and solar generation and rapid load growth due to plug-in electric vehicles. The paper recommends that up to 50% of load be controlled with minimal inconvenience to customers to potentially enhance angle, voltage, frequency, and thermal stability. An expert operator decision model is described with a view to helping system developers build operator-centered and friendly smart grid control systems.

This publication has 10 references indexed in Scilit: