Abstract
The design and fabrication of shop welded and prefabricated relatively small tanks used in the upstream segment of the oil and gas industry is governed by the American Petroleum Institute Specification 12F (API 12F). The tanks designed and fabricated in conformance with API 12F meet the criteria to operate safely with specific internal pressure and vacuum pressure. This study explores the changing the designs of API 12F tanks to include a new rectangular cleanout design with reinforcement as shell extension internally of cleanout frame and a stepped shell design. This study also investigated the introduction of two additional tank sizes in addition to existing eleven tank sizes in the current 12th Edition of API 12F. The adequacy of the new design changes and proposed tank designs were verified by elastic stress analysis with nonlinear geometry, elastic-plastic stress analysis with nonlinear geometry, and elastic buckling analysis to verify their ability to operate at a design internal pressure of 16 oz/in2 (6.9 kPa) and maximum pressure during emergency venting of 24 oz/in2 (10.3 kPa). A vacuum pressure of 1.5 oz/in2 (0.43 kPa) was also investigated using the elastic buckling analysis. The stress levels and uplift of the tanks are reported in this report to provide insights into the behavior of proposed API 12F tanks exposed to higher internal pressure and vacuum pressure.
Funding Information
  • American Petroleum Institute (2015-109646)

This publication has 25 references indexed in Scilit: