Abstract
An ensemble-based four-dimensional variational data assimilation (En4DVAR) algorithm and its per- formance in a low-dimension space with a one-dimensional shallow-water model have been presented in Part I. This algorithm adopts the standard incremental approach and preconditioning in the variational algorithm but avoids the need for a tangent linear model and its adjoint so that it can be easily incorporated into variational assimilation systems. The current study explores techniques for En4DVAR application in real- dimension data assimilation. The EOF decomposed correlation function operator and analysis time tuning are formulated to reduce the impact of sampling errors in En4DVAR upon its analysis. With the Advanced Research Weather Research and Forecasting (ARW-WRF) model, Observing System Simulation Experi- ments (OSSEs) are designed and their performance in real-dimension data assimilation is examined. It is found that the designed En4DVAR localization techniques can effectively alleviate the impacts of sampling errors upon analysis. Most forecast errors and biases in ARW are reduced by En4DVAR compared to those in a control experiment. En3DVAR cycling experiments are used to compare the ensemble-based sequential algorithm with the ensemble-based retrospective algorithm. These experiments indicate that the ensemble- based retrospective assimilation, En4DVAR, produces an overall better analysis than the ensemble-based sequential algorithm, En3DVAR, cycling approach.