Inflation as a probe of short distance physics

Abstract
We show that a string-inspired Planck scale modification of general relativity can have observable cosmological effects. Specifically, we present a complete analysis of the inflationary perturbation spectrum produced by a phenomenological Lagrangian that has a standard form on large scales but incorporates a string-inspired short distance cutoff, and find a deviation from the standard result. We use the de Sitter calculation as the basis of a qualitative analysis of other inflationary backgrounds, arguing that in these cases the cutoff could have a more pronounced effect, changing the shape of the spectrum. Moreover, the computational approach developed here can be used to provide unambiguous calculations of the perturbation spectrum in other heuristic models that modify trans-Planckian physics and thereby determine their impact on the inflationary perturbation spectrum. Finally, we argue that this model may provide an exception to constraints, recently proposed by Tanaka and Starobinsky, on the ability of Planck-scale physics to modify the cosmological spectrum.