Surface-induced stacking transition at SiC(0001)

Abstract
We present the ab initio results for the energetics of several SiC surfaces having different underlying bulk polytypes, to investigate the role of surface effects in the mechanisms of stacking inversion in SiC. We considered the Si adatom 3×3 reconstruction for the cubic SiC(111) and the hexagonal SiC(0001) surfaces, taking into account the different subsurface bulk terminations compatible with the 4H and 6H polytypes, and allowing for two opposite stacking orientations of the topmost surface layer. Our investigation reveals that the energy differences among SiC polytypes are enhanced at the surface with respect to the bulk, and two-dimensional effects favor the formation of cubic SiC. We discuss the relevant role played by the surface energetics in the homoepitaxial growth of SiC.