Reliable Noninvasive Coronary Angiography With Fast Submillimeter Multislice Spiral Computed Tomography

Abstract
Background— Multislice spiral computed tomography (MSCT) is a promising technique for noninvasive coronary angiography, although clinical application has remained limited because of frequently incomplete interpretability, caused by motion artifacts and calcifications. Methods and Results— In 59 patients (53 male, aged 58±12 years) with suspected obstructive coronary artery disease, ECG-gated MSCT angiography was performed with a 16-slice MSCT scanner (0.42-s rotation time, 12×0.75-mm detector collimation). Thirty-four patients were given additional β-blockers (average heart rate: 56±6 min−1). After contrast injection, all data were acquired during an approximately 20-s breath hold. The left main (LM), left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA), including ≥2.0-mm side branches, were independently evaluated by two blinded observers and screened for ≥50% stenoses. The consensus reading was compared with quantitative coronary angiography. MSCT was successful in 58 patients. Eighty-six of the 231 evaluated branches were significantly diseased. Without exclusion of branches, the sensitivity, specificity and positive and negative predictive value to identify ≥50% obstructed branches was 95% (82/86), 86% (125/145), 80% (82/102), and 97% (125/129), respectively. The overall accuracy for the LM, LAD, RCA, and LCX was 100%, 91%, 86%, and 81%, respectively. No obstructed LM, LAD, or RCA branches remained undetected. Classification of patients as having no, single, or multivessel disease was accurate in 78% (45/58) of patients and no patients with significant obstructions were incorrectly excluded. Conclusions— Improvements in MSCT technology, combined with heart rate control, allow reliable noninvasive detection of obstructive coronary artery disease.